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Chapter 1
Introduction

Since the introduction of the original Amiga 1000 in 1985, there have been two major
revisions of the Amiga chip set: ECS and AA. The ECS chip set introduced a minimally
upgraded version of Agnus and Denise, while the AA chip set introduced more significant
enhancements, including Lisa, a brand new Denise replacement. Despite the advantages wrought
by AA, the AA chip set was still very much an evolution of the original Amiga chip set rather
than anything revol utionary.. AA maintained most of the original features of Agnus and the entire
Paula chip, changing only those things related to video display.

The AAA chip set is the first Amiga chip set to break from this original Amiga
architecture. It is composed of four completely new full custom VLSI integrated circuits. It
improves every aspect of the Amiga chip set’s performance, and its new architecture makes
possible many things that could never be directly adapted to the original architecture in any
practical sense.

1.1 Targets

This paper is intended to be an overview of the AAA chip set and the direction we’re
going in with respect to Systems architecture that will surround the AAA chips. This is not
intended as a complete definition of either of these, we have hundreds of pages of internal
documentation devoted to AAA and next generation systems architecture that does that job.

A good understanding of the original, ECS, and AA chip sets, while probably not vital,
will be very helpful in understanding this document and, more importantly, the goals of AAA
itself. While there have been many, many improvements in AAA over previous Amiga chip sets,
AAA is still very much an Amiga chip set. It is an updated version of many of the same design
philosophies that led to prior Amiga implementations.

1.2 Credits

Most of the material on the AAA chip set was gleaned, adapted, and sometimes outright
copied from the internal document “Advanced AMIGA Architecture”. Many thanks go out to Jim
Redfield,  Ed Hepler, and the test of the AAA design group for writing most of this paper for me.
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Chapter 2
Goals of the AAA Project

The main point of the AAA chip set is to move the Amiga back toward the leading edge of
personal computer technology. However, in doing so, one main requirement is basic
compatibility with the existing Amiga chip sets, to keep as much software running as possible
without compromising the other AAA goals.

2.1 Compatibility

AAA is designed to be largely register compatible with the ECS chip set. Most of the
RGA registers from ECS are supported. The ECS “Ultra hires” registers have been eliminated, as
they were never supported in actual practice. Some other display-generation details of ECS are
no longer required or supported in AAA.

The AA registers are not supported in AAA. We believe that the 3.0 OS provides the
necessary control over AA and that no one need program “to the metal” on AA systems.
Additionally, some of the AA features were implemented in a less-than-ideal fashion, in order to
fit in the same RGA address space originally implemented in ECS. All AA-equivalent function
can be done much better by new AAA support than some kind of AA emulation. Some behaviors
can’t be perfectly emulated in AAA. Clearly, the AAA chip set’s architecture will have an
immediate impact on some elements of the ECS emulation apart from register-level compatibility.
For example, on a VRAM system, there’s no way to slow the system down to an equivalent cycle-
stealing ECS mode. So a program will often find significantly more blitter, copper, and CPU
access than on an ECS machine. This won’t be a problem if you’re using the OS correctly, but it
could be a problem to take-over-the-system type programs. Such programs may also have some
degree of problem with some AAA screen promotions and copper activity.

We envision AAA as a transitional system. It is highly desirable to eliminate the ECS-
compatibility, or for that matter, reliance on any register-level compatibility, for the next
generation of Amiga chips. So there’s an excellent chance that you’re seeing some of this stuff
for the last time in AAA.

2.2 Flexibility

The pre-ECS, ECS, and to a lesser degree the AA chip sets were each designed with a
single system architecture in mind. This defined a good deal of how the chips work together,
what kind and how much memory they would support, which CPU interface they’d hook into, etc.
Any deviation from this basis could result in a pricey system full of work-around logic, as we had
to some extent in the A3000. They also forced this defined Amiga chip sub-system to be the
same in all computers, from the low-end to the high-end, so we might have too much expense for
an ideal low end, not enough power for an ideal high-end.
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The AAA chips are designed to work in several configurations. They can use cheap
DRAM, but will gain significant extra performance using VRAM (DRAM with a high speed
serial port). They can easily hook up to a variety of 32-bit CPU buses via an easy-to-implement
asynchronous slave interface. CPU access to Chip RAM can be gated though similarly to ECS or
AA, or the CPU bus can master the entire chip bus (providing all RAM timing) for more efficient
CPU to Chip bus access. Finally, the AAA chips can be assembled in “Single” or “Dual”
configurations, depending on the display goals.

23 Improvements

Every aspect of the previous Amiga chip sets has been  improved upon in AAA. While
not every feature can be discussed here at length, some of the improvements follow.

23.1 Memory Bandwidth

The AAA chip bus is an improvement over the ECS and even AA chip bus in terms of
memory speed. The AAA chips run a four cycle burst to Chip RAM, which in raw performance
is 4.56 times faster than ECS memory access or 1.14 time faster than AA’s two-cycle burst.
However, the real key to AAA’s  memory architecture is its support for VRAM. With VRAM,
display fetches have practically no effect on the normal parallel chip RAM bus, freeing it for use
by Blitter, Copper, and CPU.

Page-Mode performance is actually a bit better than this implies, since under the right
circumstances the AAA chips can run extended burst cycles. Bursts of up to 512 words can be
run to keep up with high resolution displays. This improves overall system performance, but
increases latency to chip RAM.

2.3.2 CPU Bandwidth

The CPU access to Chip RAM is improved over past systems. Since the AAA chips
manage an asynchronous interface to the CPU, CPUs running at any speed take less of a
synchronization penalty for chip RAM access than they do in the current A3000 and A4000
systems, where synch-up is managed externally by the Gary chip. Also, AAA’s dynamic chip bus
slot allocation allows the CPU to get in more often, it’s not limited to one out of every two slots.
Finally, as mentoned, an external device such as the CPU with some extra support logic can
completely master the AAA chip RAM bus, allowing Chip RAM access as fast as today’s 32-bit
Fast RAM,

2.3.3 Chip Bus DMA

Unlike previous Amiga systems, the AAA chip bus DMA activity is dynamically
managed. The different DMA channels (40 of them, including the standard and high-priority
external channels for CPU) have fixed priorities with respect to one another, though the relation
between the blitter and the CPU can be adjusted in various ways. Because of this dynamic
allocation, its possible to run out of cycles before everything has all the time it wants. The
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highest priority channels are the deterministic channels, the lowest the blitter or CPU. They are:
graphics overlay, DRAM refresh, interrupt transfer, disk, high priority external access, audio,
display, sprite, coprocessor, processor, and blitter (the latter two by default and changable, as
mentioned).

When too many cycles are requested, something requiring deterministic acccess has to
starve. That something will be the graphics fetch. When the system can’t fetch enough graphics
data for a line, it sends the graphics overrun interrupt to the CPU. This is to be taken as an
indicator to software than something needs to be quieted down.

23.4 Blitter

The AAA blitter is significantly faster than the ECS/AA  blitter when running in 32-bit
mode, thanks to the faster, wider bus. Just doing basic scrolls, it can scroll a 640x200x2 screen
about 6 times faster, or a 640x200x4 screen about 9 times faster than with the old blitter. But
that’s just raw data movement.

Logical improvments to the blitter streamline much of its use. In 32-bit mode, it’s much
easier to program. It now operates using pixel addressing rather than via masks, modulos, and
shifts. It can operate on traditional Amiga bitplanes, or on chunky pixels of 2,4,8,  or 16 bits
width. The line-draw has also been improved, supporting a new “clip-rect” mode for better GUI
performance under Intuition. Finally, several arithmetic operations have been added for “sort”
and “tally” operations on planes of any pixel depth.

23.5 Copper

The copper has been improved in several areas. It can handle 32-bit operations for the
new 32-bit registers, and supports a “move-multiple” function for more efficient loading of blocks
of consecutive registers, such as color tables. The copper now has an interrupt capability, which
lets it receive an interrupt from the blitter. This allows the copper to manage a series of blit
operations, one after another, without additional processor intervention.

2.3.6 Graphics

Extensive improvements have been made to the graphics in AAA. A “single” system with
Fast-Page DRAM can support displays up to 800x560x9 bitplanes. The same system using
VRAM can support 800x560x13 bitplanes or 800x560x24 using “hybrid” pixels. A “dual”
system can support up to 1280x1024x5 displays with Fast-Page DRAM, up to 1280x1024x8
bitplanes or 1024x768x24 “hybrid” using VRAM.

The AAA chip set supports 256 CLUT entries of 25 bits each, like AA does. It can handle
sprites up to 128 bits wide. It supports up to 16 bitplanes, which makes dual 8-bit playfields
possible. The AAA pixel clock is no longer ties to the AAA bus clock, so a variety of display
resolutions, even standard ones, can be generated by an AAA system. Hardware-assisted screen
promotion is also supported via scaled pixel clocks.
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There are a large variety of pixel types supported in AAA. Along with the traditional
bitplane-generated pixels (including HAM8 and HAM10), we have several kinds of chunky and
compressed pixels.

Half-Chunky Half-chunky pixels come in 2,4, or 8-bit depths. These indirect
through the color lookup table like most planar modes do.

Chunky

Hybrid

PACKLUT

PACKHY

Chunky pixels are 16-bits deep. They bypass the CLUT,
providing 5 bits of red, S-bits of green, 5-bits of blue, and one
genlock overlay directly.

Hybrid pixels are 24-bits deep, composed of separate chunky
planes for Red, Green, and Blue. The genlock overlay is fixed
at (R,G,B) = 0 for this mode.

These compressed pixels are stored at 2 bits per pixel and
decompress to 8-bit half-chunky pixels. This is done by
dividing the screen into 4 x 4 pixel regions. Each region
contains two colors (8-bit values indexed through the CLUT)
and sixteen pixels.

These compressed pixels are stored at 4 bits per pixel and
decompress to 24-bit direct pixels. This is done by dividing the
screen into 4 x 4 pixel regions. Each region contains two colors
(24-bit direct values) and sixteen pixels.

2.3.7 Video Capture

The AAA pixel bus direction can be reversed, allowing an optional low cost video capture
device (framegrabber) to be implemented in AAA systems. Capture can be in any chunky display
mode. This only works in systems that use VRAM.

2.3.8 Sound

The AAA chip set contains the first improvement in Amiga-based sound since the Amiga
was introduced. The audio circuitry can handle sampling rates of better than 50kHz with 16-bit
resolution. Eight channels are supported, and channels can be assigned to the left or right output.
The 16-bit D/A converters are on-chip, and an external converter is also supported. Additionally,
the chip set does 8-bit audio sampling.

2.3.9 Floppy Disk

In addition to supporting the original 1 megabyte disk used in previous Amiga systems,
the AAA chip set supports 2 and 4 megabyte disk formats as well. This is, of course, direct
support, no speed controls or other kludges are necessary.
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As well as supporting the increased floppy densities, the AAA chipset has considerably
more flexibility. It has built-in decoding hardware, which can decode MFM,  RLL(2,7),  and
Biphase Mark (CD-ROM) formats. It can transfer by track, sector, a special “CD mode”, and a
special high speed  track mode.  Its data I/O rate has increased from 0.5 Mbit/sec to approximately
11.4 Mbit/sec (though only encoded data can handle this, since the DMA rate available to the
floppy logic peaks at 9.9Mbits/sec). Finally, the data separator is programmable, which is very
useful at tweaking up to the optimal performance  with any specific medium.

This flexible controller can handle practically any floppy format yet invented. With the
proper software, it should have no problem with the original Mac format. It handles IBM formats
at 36OK, 720K, 1.2MB,  1.44MB.  and 2.88MB, directly with sectoring (no track buffer necessary).
In theory, an RLL(2,7) floppy format at 4 megabyte density could store somewhere between
4.OMB and 5.2MB on a single disk. It should also be able to support 21.6MB flopticals.

And it can support devices other than floppies, too. CD-ROM would be a direct connect,
and similarly formatted DAT and digital radio should work too. It might even be possible to
support an ST-506 hard drive (assuming such puppies still exist). Higher transfer rates need a
cleaner signal, and may require external clocking of the data separator PLL, which is supported
by the chip set.

23.10 UARTS

The AAA chip set contains two UARTs.  Both are improvements over the Paula UART,
each buffered with a four-byte FIFO. This significantly improves serial performance at high
speeds, since fewer interrupts are taken, and increases reliability, since there’s much more time
available to respond to a serial interrupt.
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Chapter 3
The AAA Chips

The AAA system consists of four completely new VLSI chips, implemented in high speed
CMOS. The functions of the first three are partitioned similarly to those of the ECS/AA chip sets.
Andrea is the chip bus controller, analogous to Agnus/Alice. Monica is the new display
controller, replacing Denise. Mary, the Paula replacement, controls various types of I/O. Finally,
a new chip, Linda, double-buffers full display lines.

For the most part, the four chips function as one. Between them, there are nearly 256
word-addressed registers (compatibility registers), 384 longword-addressed registers (new stuff),
and 5 12 longword-addressed CLUT registers. It’s often true that a single register address
function is performed by two or three of the chips.

3.1 The Andrea Chip

Andrea is the chip bus controller, responsible for managing the chip bus. It is the core of
the AAA system, much like a microprocessor is the core of a normal CPU system. The Andrea
chip has a rather impressive list of features:

Chip RAM control. Normally, Andrea manages all chip RAM access, supporting both
Fast-Page DRAM and VRAM. A simple configuration mechanism tells Andrea what’s on
the chip bus at startup time. Eight 256Kword banks of chip RAM are supported, and with
a little extra logic banks of Fast-Page DRAM and VRAM can be intermixed on a bank-by-
bank basis. A “high priority” bus request allows an external device to master the chip
RAM bus rather than Andrea.

CPU bus gating. The Andrea chip controls access to the chip RAM bus and chip registers
from the CPU port. CPU addresses go through Andrea, CPU data is externally latched
under Andrea’s control. This is a reasonably general purpose CPU interface, which
manages synchronization to the chip bus, directly supporting CPUs  of varying clock
speeds (previously this was done with extra logic wrapped around the ECS and AA chip
sets, like the A3000 and A4000).

Chip bus control. A variety of control signals for management of both the chip bus and
various aspects of the other AAA chips are generated in Andrea. The multiplexed chip
address/data bus is also mastered by Andrea. This bus contains a register address at the
start of a cycle (like the RGA bus on ECS/AA), data in the later stages of a cycle. All of
the AAA chip set’s DMA channels are addressed by Andrea, which is also responsible for
allocating the various DMA channels according to which units are requesting DMA and
the priority of each requesting channel.
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Clocks. The Andrea chip manages clocking of both the chip bus and the video display.
Control lines from Andrea  select one of eight possible pixel clock values available at any
given time. These can be changed on a line-by-line basis.

Video timing control. AlI video timing and synchronization signals are created in Andrea.
A number of different counters in Andrea generate video synchs, blanking, and the logical
controls necessary to support the AAA display. Andrea also manages a light pen intput.

Blitter. The Andrea chip contains the Amiga blitter. This blitter can handle the AAA chip
RAM bus at full speed and width, but it also has a compatibility mode that lets it handle
16bit data just like the pre-AAA blitter. In 32-bit bit mode, the blitter has a considerable
number of new functions. The new blitter is pixel addressed, it automatically calculates
first and last mask, proper shifts, and whether prereads are necessary. It supports pixel
sizes of 1, 2,4, 8, or 16 bits, to cover all AAA display modes. It now has “sort” and
“tally” functions designed mainly to assist chunky pixel processing. The sort function
will run a bubble sort on a plane of pixels, governed by a sort key. The tally function
records the number of instances of each byte value in a plane of pixel data. Finally, the
new blitter can perform a variety of arithmetic operations on chunky pixels, including
addition, averaging, subtraction, saturated subtraction, etc. The following tables illustrate
example blitter speed (screens scrolled/second) for various system configuration:

Single, Fast-Puge DRAM
Display 6 4 0 x 2 0 0  640x400 800x560 1 0 2 4 x 7 6 8  1280x1024
2 Bitplane 489.06 233.42 124.54 NA NA
4 Bitplane 233.37 105.58 51.49 NA NA
8 Bitplane 105.53 41.65 14.96 NA NA

16 Bitplane 41.61 NA NA NA NA
Half Chunky 110.22 46.33 19.03 NA NA
Chunky 46.52 14.59 NA NA NA
Hybrid 24.99 NA NA NA NA
ECS 2 Bitplane 81.80 25.83 NA NA NA
ECS 4 Bitplane 25.87 NA NA NA NA

Single, Video DRAM
Display 640x200 640x400 800x560 1024x768  1280x1024
2 Bitplane 504.23 233.42 124.54 NA NA
4 Bitplane 248.54 105.58 51.49 NA NA
8 Bitplane 120.70 41.65 14.96 NA NA

16 Bitplane 56.78 NA NA NA NA
Half Chunky 127.39 46.33 19.03 NA NA
Chunky 63.70 14.59 NA NA NA
Hybrid 42.17 NA NA NA NA
ECS 2 Bit-plane 81.80 25.93 NA NA NA
ECS 4 Bitplane 25.87 NA NA NA NA
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Dual. Fast-Page DRAM

Display 640X200

2 Bitplane 498.24
4 Bitplane 242.56
8 Bitplane 114.72

16 Bitplane 50.80
Half Chunky 118.77
Chunky 55.06
Hybrid 33.54
ECS 2 Bitplane 81.80
ECS 4 Bitplane 25.87

Dual, Video RAM

Display
2 Bitplane
4 Bitplane
8 Bitplane

16 Bitplane
Half  Chunky
Chunky
Hybrid
ECS 2 Bitplane
ECS 4 Bitplane

640 x 200 640 x 400
504.36 248.69
248.68 120.85
120.84 56.93
56.92 24.97

126.85 62.93
63.36 31.40
41.62 20.32
81.80 25.83
25.87 NA

640x400
242.59 134.05
114.75 61.00
50.83 24.48
18.87 NA
54.86 27.72
23.12 9.63

NA NA
25.83 NA

NA NA

800X560

8 0 0 X 5 6 0  1024 x 768 1280 x 1024
140.49 78.67 46.38
67.44 37.06 21.41
30.9 1 16.25 8.92
12.65 5.85 2.68
35.71 20.12 11.92
17.79 9.99 5.89
11.36 6.25 NA

NA NA NA
NA NA NA

1024 x 768 l280x1024
71.66 38.56
30.05 13.59
9.24 NA
NA NA

11.93 3.44
3.31 NA
NA NA
NA NA
NA NA

Copper. The AAA copper, as mentioned, supports both 16-bit  and 32-bit register
operations. A multiple move instruction has been implemented to greatly reduce the
overhead of large sequential register movements. A new interrupt mechanism allows the
copper to be interrupted. Interrupt sources, in order of priority, are vertical blanking, wait
finished, and blitter finished. The blitter finished interrupt allows the copper to re-load the
blitter with the next blit operation at the end of the current blitter operation. In this way,
the CPU can usually just schedule blit operations in the copper’s blitter interrupt routine
and get on with other work.

3.2 The Linda Chip

The Linda chip is a display line buffer for the AAA system. Linda provides a great deal of
the intelligence behind the AAA display system. While one complete line of display data is being
fed to Monica from one of Linda’s line buffers, the next line is being fetched into Linda’s other
line buffer. There are many advantages of this prefetch  process:

Much more efficient Fast-Page display fetch cycles can be run than previously possible.
Previous systems use zero or two-cycle Fast-Page fetches, AAA systems can run “burst”
cycles hundreds of transfers in length.
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. Bitplane alignment can still be on word boundries (as allowed  with ECS), Linda makes
any necessary realignments in order to pass longword-aligned data on to Monica. There
are, however, various alignment restrictions on some of the new display modes:

Mode Alignment
Bitplane l6-bit
Half-Chunky 64-bit
Chunky 64-bit
PACKLUT 64-bit
PACKHY 64-bit
Overlay 128-bit
32-bit Sprites 16-bit
64-bit Sprites 64-bit
128-bit Sprites 128-bit

Rather than Fast-Page memory, Video RAM (VRAM)  can be used without requiring the
strict alignment requirements typical of most VRAM-based display systems. VRAM
allows  display fetch overhead to be essentially eliminated from normal chip bus activity.

The pixel clock is easily decoupled from the bus clock. The chip RAM side of Linda runs
at chip RAM bus speed, the Monica side of Linda runs at pixel clock speed.

Packed pixel formats PACKLUT and PACKHY are decoded here, passing them on to
Monica as normal 8-bit half-chunky or 24-bit hybrid pixels, respectively.

3.3 The Monica Chip

Monica is the AAA display controller chip. It takes in display timing data generated by
Andrea and graphics data fetched by Linda and from that generates 25-bit digital and analog
RBGoutput (24-bits of color, one of genlock overlay). Monica contains the 256 entry CLUT
(color lookup table), HAM mode logic, priority control for playfields/overlay  and sprite display,
and 8-bit digital to analog converters, one each for Red, Green, and Blue.

HAM (hold and modify) mode is of course the special compact high-color display mode
provided in ECS and AA chip sets. Using this mode, Monica can either supply a direct CLUT
value or modify a previously displayed value. The five and six-bit modes from ECS, with 4096
color resolution, is supported, as well as the eight-bit mode from ECS and a new ten-bit HAM,
which allows a full 24-bits worth of color resolution using only ten bitplanes.

An optional one-bit overlay plane is also supported in Monica for chunky or packed
display modes. This requires a VRAM-based chip RAM buffer and the chunky or packed display
must be in the odd playfield, while the overlay is fetched based on the even playfield  pointer.
There are a number of restrictions on the overlay plane when compared to a normal second
playfield  in the traditional bitplane  display.

International DevCon 93 14 An Overview of the Advanced
Amiga Architecture



The actual display capability of any given system is ultimately determined by how fast
Monica can be fed pixel data by Linda. Which is, of course, determined by how fast Linda can
fetch data from the chip RAM bus. This depends on the type of memory, the size of the system
(single or dual), and the display mode (chunky modes tend to allow a more efficient fetch from
chip RAM for the same resolution). The following tables show non-interlaced resolutions with
different system setups.

Page DRAM

Bitplane
Single, Fast

Display
Resolution

Half
Chunky

Chunky

640x200 16 Yes Yes
704x200 16 Yes Yes
640x400 12 Yes Yes
8 0 0 X  5 6 0  10 Yes no

1024x 768 NA NA NA
1280x 1024 NA NA NA

Hybrid Pack Pack
LUT Hy

Yes
Yes
Yes
Yes
NA
NA

Yes
Yes
Yes
no
NA
NA

yes
Yes
no
no
NA
NA

Single, Video DRAM

Display
Resolution

1 Bitplane  1 Half Chunky / C h u n k y Hybrid Pack Pack
LUT HY

Yes Yes
Yes Yes
Yes Yes
Yes Yes
NA NA
NA NA

640x200 16 Yes
704x 200 16 Yes
6 4 0 X 4 0 0  16 Yes
800x 560 14 Yes

1024x 768 NA NA
1280x 1024 NA NA

Yes

Yes
Yes
yes
Yes
yes
NA
NA

Yes
Yes
NA
NA

Dual, Fast-Page DRAM

Display Bitplane Half Chunky Hybrid
Resolution Chunky

Pack
LUT

Pack
HY

640x200
704x 200
6 4 0 X 4 0 0

800x 560
1024x 768
1280x 1024

16
16
16
13

8

yes
Yes
Yes

y e s
y e s

no

yes
yes
Yes
yes
no
no

Yes
Yes
Yes
Yes
Yes
no
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viuu, VUKW  vnnm,w
640x200 16
704x 200 16
6 4 0 X 4 0 0  16
800x 560 16

1024x 768 11
1280x 1024 8

:;I,, 1 C h u n k y  1 Hybrid  1 pc$ 1 s

Yes
Yes
Yes
Yes
Yes
no

3.4 The Mary Chip

Mary is the AAA peripheral controller chip. It manages floppy disk, audio, and serial
(UART) I/O. It is the first improvement in these areas  for Amigas built into an Amiga chip set,
and the improvements are considerable.

The floppy disk system was discussed in some detail in Chapter 2. Basically, the data
separator now runs up to twenty times faster, with variable parameters and the option of a
separate PLL clock. Mary supports internal decode of several formats, several new transfer
options, hardware CRC calculation, and a higher DMA bandwidth to chip RAM. A comparison
with Paula &tails these new features:

Function I Paula
raw bit width
max raw bit rate
encoding methods:

zx

E2.7)
Biphase-Mark

sync
transfer modes:

track

FE&al
“trackplus”

hardware CRC
async PLL clock
input types

2000,400O ns
0.5 Mbit/sec

Yes
Yes
no (done in software)
no
no
l6-bit

Yes
no
no
no
no
no
pulse

88-9000 ns
11.4 Mbit/set

1 Mary

Yes
Yes
Yes
Yes
Yes
32, 16,8-bit

Yes
Yes
Yes
Yes
yes (sector, trackplus)
Yes
pulse, NRZ

Mary’s audio system is also a substantial improvement over Paula’s.  The sampling rate,
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number of channels, sample resolution, volume resolution, sampling accuracy, and flexibility
have all been improved. On-chip DACs are now at 16-bit resolution, and a digital audio output is
available at 20-bits per channel (the supported samples are 16-bits, but sample volume yields a
17-bit result, and eight channels summed into a single output without scaling yields a 20-bit

Function Paula
sample rate 29kHz
channels 4
volume bits 6
volume aliasing Yes
sample size 8 bits
digital out no
dynamic range 15 bits
channels on left 2 (0,3)
channels on right 2 (1,2)
global mono bit no
ouput time resolution 280 ns
period resolution 280 ns

Mary
64kHz
8
12 (signed)
no
8 or 16bits
yes
16 bits
0-8 (any or all)
O-8 (any or all)
yes
280 ns
280/64 ns

value). A comparison of audio in Paula versus Mary yields:
The pot inputs in Mary have been enhanced over Paula’s in separate ways. First of all, in

order to make them consistent between the widely varying display frequencies supported in AAA,
Mary maintains its own sampling counter, which is basically an NTSC compatible horizontal line
counter. There is also a new audio sampling mode, which turns the pot lines around to support 8-
bit stereo input (with appropriate analog interface circuitry). Higher resolutions are available via
an external ADC.

As mentioned before, the Mary UART is an enhancement over the Paula UART. A four
deep FIFO has been added, which will reduce interrupt overhead (and overruns caused by missed
interrupts) and make faster serial reads possible. Mary contains two UARTS, one that’s in the
same RGA address as the original Paula UART.

35 The Single System

The “single’* AAA subsystem consists of one each of the four AAA chips. This example
system uses video RAM, which is certainly the preferred implementation. Andrea controls this
VRAM and the chip bus. The 32-bit parallel port of the VRAM connects to Andrea and the A/D
bus (register address and all data go across this bus). The serial ports of the VRAM connect to
Linda, which handles all the video fetching, under Andrea’s direction. Mary connects to the A/D

bus and to various I/O ports, such as audio, floppy, and serial. Finally, Monica connects to the
other side of Linda, the A/D bus, and to the video output (digital or analog).

The interface to any kind of system will be implemented in some kind of “glue” chip,
most likely a new gate array, though this function certainly could be implemented in a PAL and
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Amiga S
Local

TTL based circuit, as on the AAA prototype system. Ideally, uch a glue chip will do a variety of
jobs. It should buffer data between the CPU/Local bus and the chip bus. A four longword deep
buffer here will allow a CPU to write to chip RAM without an immediate delay, and it can also be
used to match data rates between the chip and local buses, which are most likely running at
different speeds. Andrea requires some kind of external logic to properly drive RAS* lines to
each DRAM bank -- this also might be implemented in such a glue device. This will be
especially true if its desirable to build an AAA system that handles VRAM in some kind of
SIMM, since a SIMM wouldn’t naturally drop into AAA’s addressing and AUTOCONFIG
scheme. The glue chip may also have something to do with pixel clock generation, though the
main pixel clock generator will more than likely be a custom clock synthesis device.

The “pixel bus slot” shown is an expansion slot that makes the pixel bus (video data bus)
available for expansion. This isn’t the pixel output, but the raw data sent from memory to
Monica. The main reason for providing some kind of expansion here is to support the
framegrabber mode of AAA. In this mode, Linda reverses direction. Data from the pixel bus
(supplied by a video capture bus of some kind, in an appropriate format) goes into Linda and is
read out and stored by Andrea. This mode also requires the system to be slaved to an external
pixel clock, like in genlock mode.

Single AAA systems can also support a traditional AA-compatible video slot. This can
support devices that use either analog video or 25-bit digital video. Not every AA-compatible
video &vice will necessarily work here, of course, since the pixel clock and display rates can be
significantly higher than those possible in AA systems. It’s not obvious, however, that a new
type of video slot would be a better solution, though perhaps some of the reserved pins on the AA
slot specification will be used for extra AAA signals in actual AAA implementations.
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3.6 The Dual System

An alternate AAA system configuration is the so-called “dual” system. This system uses
an Andrea and Mary as before, but contains two Lindas and two Monicas. Andrea, Mary, and
Monica still sit on a 32-bit  random-access bus, but the display path is now 64-bits wide. Lindas
and Monicas are paired in “even” and “odd” groups to process, in turn, even and odd pixels. The
pixel rate generated at output is twice the pixel clock rate, so pixel rates as high  as 110 MHz can
be reached with this kind of system.

In order to support HAM mode, which is of course dependent on past pixels, each Monica
indicates its last CLUT access and HAM operation on a special HAM bus, and in turn snoops the
HAM bus of the other Monica. In order to generate the full-speed video output and still use the
Monica video DACs,  each Monica chip has a direction control for its pixel bus. In this setup, the
even Monica puts pixel information out, while the odd Monica takes that same information in and
feeds it, along with its own pixel data, to the DACs. Both 24-bit values go to the DACs in the
same pixel clock

This system supports a 64-bit pixel bus for video capture and other similar operations. It’s
possible to support an AA style 25-bit digital video slot as well, but with even more limitations.
Since the pixel bus of the odd Monica acts as input, only every other pixel is actually available in
digital form on this dual system. In some resolutions, that won’t be a problem, in others it will A
full featured digital video port would require an external DAC and either a multiplexer or 48-bit
pixel path. A better solution for this kind of thing would be to adopt some kind of digital video
transmission protocol as soon as one becomes available.
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Chapter 4
Future System Concerns

The AAA chips obviously function as just part of a whole Amiga system. It’s certainly
possible to build a machine, like the Amiga 500, where the Amiga chips essentially are the whole
system. Such a system would be composed of the AAA chips, a microprocessor, memory, some
CIAs, analog stuff for audio, and one gate array for “glue”. Of course, such a system is rather
boring to talk about. It’s also somewhat unlikely that early AAA systems will be of this flavor.

Taking the high-end route, there’s considerably more to an Amiga system than the
custom chips. It would, however, be a mistake to base things directly on past high-end systems
like the A3000/A4000. The system architecture of those systems, while fine for the time, is
lacking in a number of important areas. The most obvious factor is that the A3000 architecture
isn’t very modular or flexible. It was designed to support our ideas for the A3000, nothing more.
Even in the A4000, extra logic was necessary to push this A3000 architecture is a slightly
different direction. On the AAA prototype motherboard, there is extensive high-speed PAL logic
necessary to implement a servicable  but unsophisticated AAA system.

The primary goal of an advanced Amiga system can be summed up in one word:
modularity. Such a new system, both logically and physically, is composed of several
interchangable subsystems. No one piece has any unnatural dependence on any other;
interconnections between the system components have to be based on intentional system
standards, not chance implementation details.

4.1 The System Bus

The next generation system should have a processor-independent system bus optimised
for chip to chip interconnect. For the most part this replaces the traditional CPU-specific local
bus found on previous Amiga systems. This establishes a standard to which several generations
of new system and, eventually, Amiga chips can be designed. Since each major system chip
hooks into the system bus independently of any other, this finally breaks the interdependence of
chips in a chip set, allowing upgrades as necessary to any piece of the system.

4.2 The Motherboard

The motherboard for such a system contains just the basics that will be needed by every
system. This will certainly include a number of basic I/O chips for the standard ports on that
machine. The CPU, Amiga chips, and various other elements of the system are located on
separate modules. These don’t necessarily have to be physically located on different cards, but
ideally they will be. Not only does this make motherboard upgrade much easier, but it allows
several different motherboards to be designed using the same plug-in modules, and it allows
Commodore to easily support more options in system and processor makeup.
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The heart of the motherboard is the motherboard controller. This manages motherboard
based I/O, such as CIA chips, hard  disk interface (IDE, SCSI, whatever), network, etc. This also
acts as a support for the system bus, handling arbitration of bus master and interrupts. Most I/O
chips sit on a flexible 8/16 bit I/O bus defined by the system controller. Many programmable
chip selects and interrupt inputs allow new I/O devices to be added as time goes by without extra
glue or the need to redesign the motherboard controller.
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43 The Amiga Chip Module

For the first time in an Amiga system, the Amiga chips are located on a plug-in module
rather than fixed into the motherboard. This certainly allows easy upgrade to new Amiga chip
sets, but its also a very reasonably thing to consider just in light of the AAA chip set, since a
veriety of configurations can be made just with AAA, even if no other Amiga chips were
considered. The Amiga module connects to the system bus and to a special motherboard-support
connector. The system interface device glues Andrea to the system bus, providing the proper bus
translation, data FIFOing, and chip selects. The support connector routes general Amiga
resources, such as audio, floppy and UART lines, to the appropriate I/O connectors on the
motherboard. Digital and analog video also go off this way to mate with video expansion
connectors. The main video connector and other connectors specific to the Amiga  module will be
provided directly on the Amiga module.

4.4 The Host Processor Module

The main system processor is supported on the host processor module. This card has one
connector to the system bus, and it gets the first system bus access on boot up by default. It has a
second connector to a wide DRAM bus located on the motherboard. While the motherboard
houses this DRAM, it’s totally up to the host module to drive the DRAM bus. This of course
means that the host module must contain a DRAM controller. In most cases, the DRAM
controller will be intregrated with the system bus controller to provide a low cost interface
between host CPU and the motherboard. Locating the DRAM controller on the host module
allows DRAM, the most speed-critical element of the system, to be optimized for any host
processor chosen.

4.5 The Expansion Controller

The expansion controller is another system bus chip that does conversions to and from the
Zorro bus protocols. This can be located on a motherboard (maybe for towers) or on a system bus
module (maybe for desktops). It is completely optional -- if a Zorro bus isn’t desired, or should
be an option on some systems, fine.

4.6 Open System Bus Slots

There will likely be a free system bus slot or two on most expandable machines. These
support various kinds of high-speed expansion: fast peripherals, processor farms, DSPs, etc. The
number of open system bus slots will of course depend on the final system bus specification, the
space available on a given motherboard, etc. Due to the anticipated speed and purpose of such
slots, it’s not expected that there will be more than two or three open slots in any system, and the
module cards aren’t likely to be very large. These aren’t designed to replace Zorro III as a
general purpose expansion bus. Instead, the system bus should be thought of as a more flexible
local bus/coprocessor slot.
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